skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Barth, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The highly biologically productive northern California Current, which includes the Oregon continental shelf, is an archetypal eastern boundary region with summertime upwelling driven by prevailing equatorward winds and wintertime downwelling driven by prevailing poleward winds. Between 1960 and 1990, monitoring programs and process studies conducted off the central Oregon coast advanced the understanding of many oceanographic processes, including coastal trapped waves, seasonal upwelling and downwelling in eastern boundary upwelling systems, and seasonal variability of coastal currents. Starting in 1997, the U.S. Global Ocean Ecosystems Dynamics – Long Term Observational Program (GLOBEC-LTOP) continued those monitoring and process study efforts by conducting routine CTD (Conductivity, Temperature, and Depth) and biological sampling survey cruises along the Newport Hydrographic Line (NHL; 44.652°N, 124.1 – 124.65°W), located west of Newport, Oregon. Additionally, GLOBEC-LTOP maintained a mooring slightly south of the NHL, nominally at 44.64°N, 124.30°W, on the 81-meter isobath. This location is referred to as NH-10, as it is located 10 nautical miles or 18.5 km west of Newport. A mooring was first deployed at NH-10 in August 1997. This subsurface mooring collected water column velocity data using an upward-looking acoustic Doppler current profiler. A second mooring with a surface expression was deployed at NH-10 starting in April 1999. This mooring included velocity, temperature and conductivity measurements throughout the water column as well as meteorological measurements. GLOBEC-LTOP and the Oregon State University (OSU) National Oceanographic Partnership Program (NOPP) provided funding for the NH-10 moorings from August 1997 to December 2004. Since June 2006, the NH-10 site has been occupied by a series of moorings operated and maintained by OSU with funding from the Oregon Coastal Ocean Observing System (OrCOOS), the Northwest Association of Networked Ocean Observing Systems (NANOOS), the Center for Coastal Margin Observation & Prediction (CMOP), and most recently the Ocean Observatories Initiative (OOI). While the objectives of these programs differed, each program contributed to long-term observing efforts with moorings routinely measuring meteorological and physical oceanographic variables. This article provides a brief description of each of the six programs, their associated moorings at NH-10, and our efforts to combine over twenty years of temperature, practical salinity, and velocity data into one coherent, hourly averaged, quality-controlled data set. Additionally, the data set includes best-fit seasonal cycles calculated at a daily temporal resolution for each variable using harmonic analysis with a three-harmonic fit to the observations. 
    more » « less
  2. Physical transport dynamics occurring at the ocean mesoscale (~ 20 km – 200 km) largely determine the environment in which biogeochemical processes occur. As a result, understanding and modeling mesoscale transport is crucial for determining the physical modulations of the marine ecosystem. This review synthesizes current knowledge of mesoscale eddies and their impacts on the marine ecosystem across most of the North Pacific and its marginal Seas. The North Pacific domain north of 20°N is divided in four regions, and for each region known, unknowns and known-unknowns are summarized with a focus on physical properties, physical-biogeochemical interactions, and the impacts of climate variability and change on the eddy field and on the marine ecosystem. 
    more » « less
  3. Abstract The ocean is home to many different submesoscale phenomena, including internal waves, fronts, and gravity currents. Each of these processes entail complex nonlinear dynamics, even in isolation. Here we present shipboard, moored, and remote observations of a submesoscale gravity current front created by a shoaling internal tidal bore in the coastal ocean. The internal bore is observed to flatten as it shoals, leaving behind a gravity current front that propagates significantly slower than the bore. We posit that the generation and separation of the front from the bore is related to particular stratification ahead of the bore, which allows the bore to reach the maximum possible internal wave speed. After the front is calved from the bore, it is observed to propagate as a gravity current for ≈4 hours, with associated elevated turbulent dissipation rates. A strong cross-shore gradient of along-shore velocity creates enhanced vertical vorticity (Rossby number ≈ 40) that remains locked with the front. Lateral shear instabilities develop along the front and may hasten its demise. 
    more » « less
  4. Abstract After a relaxation of the regional southward, upwelling‐favorable winds along the central California coast, warm water from the Santa Barbara Channel propagates northward as a buoyant plume. As the plume transits up the coast, it causes abrupt temperature changes and modifies shelf stratification. We use temperature and velocity data from 35 moorings north of Pt. Arguello to track the evolution of a buoyant plume after a wind relaxation event in October 2017. The moorings were deployed September–October 2017 and span a ∼30 km stretch of coastline, including nine cross‐shelf transects that range from 17 to 100 m water depth. The high spatial resolution of the data set enables us to track the spatiotemporal evolution of the plume, including across‐front temperature difference, cross‐shore structure, and propagation velocity. We observe an alongshore current velocity signal that takes ∼10 hr to propagate ∼25 km alongshore (∼0.7 m/s) and a temperature signal that takes ∼34 hr to propagate the same distance (∼0.2 m/s). The plume cools as it transits northward, leading to a decrease in the cross‐front temperature difference and the reduced gravity (g’). The plume’s propagation velocity is nonuniform in space and time, with accelerations and decelerations unexplained by the alongshore reduction ing’or advection by tidal currents. As the plume reaches the northernmost part of the mooring array, its temperature variability is obscured by internal waves, a prominent feature in the region. We focus on one relaxation event but observe five other similar events over the 2 months record. 
    more » « less